SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
01.05.2013

Seminar 2

(S2.1) Let (X, T) be a TDS.
(i) Any strongly T-invariant set is also T-invariant.
(ii) The complement of a strongly T-invariant set is strongly T-invariant.
(iii) The closure of a T-invariant set is also T-invariant.
(iv) The union of any family of (strongly) T-invariant sets is (strongly) T-invariant.
(v) The intersection of any family of (strongly) T-invariant sets is (strongly) T-invariant.
(vi) If A is T-invariant, then $T^{n}(A) \subseteq A$ and $T^{n}(A)$ is T-invariant for all $n \geq 0$.
(vii) If A is strongly T-invariant, then $T^{n}(A) \subseteq A$ and $T^{-n}(A)=A$ for all $n \geq 0$; in particular, $T^{-n}(A)$ is strongly T-invariantfor all $n \geq 0$.
(viii) For any $x \in X$, the forward orbit $\mathcal{O}_{+}(x)$ of x is the smallest T-invariant set containing x and $\overline{\mathcal{O}}_{+}(x)$ is the smallest T-invariant closed set containing x.
(S2.2) Let (X, T) be an invertible TDS.
(i) $A \subseteq X$ is strongly T-invariant if and only if $T(A)=A$ if and only if A is strongly T^{-1}-invariant.
(ii) The closure of a strongly T-invariant set is also strongly T-invariant.
(iii) If $A \subseteq X$ is strongly T-invariant, then $T^{n}(A)=A$ for all $n \in \mathbb{Z}$; in particular, $T^{n}(A)$ is strongly T-invariantfor all $n \in \mathbb{Z}$.
(iv) For any $x \in X$, the orbit $\mathcal{O}(x)$ of x is the smallest strongly T-invariant set containing x and $\overline{\mathcal{O}}(x)$ is the smallest strongly T-invariant closed set containing x.
(v) For any nonempty open set U of $X, \bigcup_{n \in \mathbb{Z}} T^{n}(U)$ is a nonempty open strongly T invariant set and $X \backslash \bigcup_{n \in \mathbb{Z}} T^{n}(U)$ is a closed strongly T-invariant proper subset of X.
(S2.3) Let (X, T) be a TDS and $x \in X$. Then
(i) x is a forward transitive point if and only if $x \in \bigcup_{n \geq 0} T^{-n}(U)$ for every nonempty open subset U of X.
(ii) Assume that (X, T) is invertible. Then x is a transitive point if and only if $x \in$ $\bigcup_{n \in \mathbb{Z}} T^{n}(U)$ for every nonempty open subset U of X.
(S2.4) Let (X, T) be a TDS with X metrizable and $\left(U_{n}\right)_{n \geq 1}$ be a countable basis of X. Then
(i) $\left\{x \in X \mid \overline{\mathcal{O}}_{+}(x)=X\right\}=\bigcap_{n \geq 1} \bigcup_{k \geq 0} T^{-k}\left(U_{n}\right)$.
(ii) If (X, T) is invertible, then $\{x \in X \mid \overline{\mathcal{O}}(x)=X\}=\bigcap_{n \geq 1} \bigcup_{k \in \mathbb{Z}} T^{k}\left(U_{n}\right)$.
(S2.5) Let (X, T) be a TDS. The following are equivalent:
(i) If U is a nonempty open subset of X such that $T(U)=U$, then U is dense.
(ii) If $E \neq X$ is a proper closed subset of X such that $T(E)=E$, then E is nowhere dense.

