SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

01.05.2013

Seminar 2

(S2.1) Let (X,T) be a TDS.

- (i) Any strongly *T*-invariant set is also *T*-invariant.
- (ii) The complement of a strongly T-invariant set is strongly T-invariant.
- (iii) The closure of a *T*-invariant set is also *T*-invariant.
- (iv) The union of any family of (strongly) T-invariant sets is (strongly) T-invariant.
- (v) The intersection of any family of (strongly) T-invariant sets is (strongly) T-invariant.
- (vi) If A is T-invariant, then $T^n(A) \subseteq A$ and $T^n(A)$ is T-invariant for all $n \ge 0$.
- (vii) If A is strongly T-invariant, then $T^n(A) \subseteq A$ and $T^{-n}(A) = A$ for all $n \ge 0$; in particular, $T^{-n}(A)$ is strongly T-invariant for all $n \ge 0$.
- (viii) For any $x \in X$, the forward orbit $\mathcal{O}_+(x)$ of x is the smallest T-invariant set containing x and $\overline{\mathcal{O}}_+(x)$ is the smallest T-invariant closed set containing x.
- (S2.2) Let (X, T) be an invertible TDS.
 - (i) $A \subseteq X$ is strongly *T*-invariant if and only if T(A) = A if and only if *A* is strongly T^{-1} -invariant.
 - (ii) The closure of a strongly *T*-invariant set is also strongly *T*-invariant.
- (iii) If $A \subseteq X$ is strongly *T*-invariant, then $T^n(A) = A$ for all $n \in \mathbb{Z}$; in particular, $T^n(A)$ is strongly *T*-invariant for all $n \in \mathbb{Z}$.
- (iv) For any $x \in X$, the orbit $\mathcal{O}(x)$ of x is the smallest strongly T-invariant set containing x and $\overline{\mathcal{O}}(x)$ is the smallest strongly T-invariant closed set containing x.

- (v) For any nonempty open set U of X, $\bigcup_{n \in \mathbb{Z}} T^n(U)$ is a nonempty open strongly T-invariant set and $X \setminus \bigcup_{n \in \mathbb{Z}} T^n(U)$ is a closed strongly T-invariant proper subset of X.
- (S2.3) Let (X,T) be a TDS and $x \in X$. Then
 - (i) x is a forward transitive point if and only if $x \in \bigcup_{n \ge 0} T^{-n}(U)$ for every nonempty open subset U of X.
 - (ii) Assume that (X,T) is invertible. Then x is a transitive point if and only if $x \in \bigcup_{n \in \mathbb{Z}} T^n(U)$ for every nonempty open subset U of X.

(S2.4) Let (X,T) be a TDS with X metrizable and $(U_n)_{n\geq 1}$ be a countable basis of X. Then

- (i) $\{x \in X \mid \overline{\mathcal{O}}_+(x) = X\} = \bigcap_{n \ge 1} \bigcup_{k \ge 0} T^{-k}(U_n).$
- (ii) If (X,T) is invertible, then $\{x \in X \mid \overline{\mathcal{O}}(x) = X\} = \bigcap_{n \ge 1} \bigcup_{k \in \mathbb{Z}} T^k(U_n).$

(S2.5) Let (X, T) be a TDS. The following are equivalent:

- (i) If U is a nonempty open subset of X such that T(U) = U, then U is dense.
- (ii) If $E \neq X$ is a proper closed subset of X such that T(E) = E, then E is nowhere dense.